◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。
IT行业相对于一般传统行业,发展更新速度更快,一旦停止了学习,很快就会被行业所淘汰。所以我们需要踏踏实实的不断学习,精进自己的技术,尤其是初学者。今天24分享网给大家整理了《Redis分布式缓存与秒杀》,聊聊缓存、Redis分布式、秒杀,我们一起来看看吧!
1、数据丢失问题
Redis数据持久化。
2、并发能力问题
大家主从集群,实现读写分离。
3、故障恢复问题
利用Redis哨兵,实现健康检测和自动恢复。
4、存储能力问题
搭建分片集群,利用插槽机制实现动态扩容。
RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。
快照文件称为RDB文件,默认是保存在当前运行目录。
Redis内部有触发RDB的机制,可以在redis.conf文件中找到,格式如下:
bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。
fork采用的是copy-on-write技术:
RDB方式bgsave的基本流程?
RDB会在什么时候执行?save 60 1000代表什么含义?
RDB的缺点?
AOF的命令记录的频率也可以通过redis.conf文件来配:
AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。
AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF:
AOF的命令记录的频率也可以通过redis.conf文件来配:
配置项 | 刷盘时机 | 优点 | 缺点 |
---|---|---|---|
Always | 同步刷盘 | 可靠性高,几乎不丢数据 | 性能影响大 |
everysec | 每秒刷盘 | 性能适中 | 最多丢失一分钟的数据 |
no | 操作系统控制 | 性能最好 | 可靠性较差,可能丢失大量数据 |
因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。
set id 1 set name nezha set id 2 bgrewriteaof mset name nezha id 2
Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:
# AOF文件比上次文件 增长超过多少百分比则触发重写auto-aof-rewrite-percentage 100# AOF文件体积最小多大以上才触发重写 auto-aof-rewrite-min-size 64mb
RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。
RDB | AOF | |
---|---|---|
持久化方式 | 定时对整个内存做快照 | 记录每一次执行的命令 |
数据完整性 | 不完整,两次备份之间会丢失 | 相对完整,取决于刷盘策略 |
文件大小 | 会有压缩,文件体积小 | 记录命令,文件体积很大 |
宕机恢复速度 | 很快 | 慢 |
数据恢复优先级 | 低,因为数据完整性不低 | 高,因为数据完整性更高 |
系统资源占用 | 高,大量CPU和内存消耗 | 低,主要是磁盘IO资源,但AOF重写时会占用大量CPU和内存资源 |
使用场景 | 可以容忍数分钟的数据丢失,追求更快的启动速度 | 对数据安全性要求较高常见 |
public Result seckillVoucher(Long voucherId) { Long userId = UserHolder.getUser().getId(); long orderId = redisIdWorker.nextId("order"); // 1.执行lua脚本 Long result = stringRedisTemplate.execute( SECKILL_SCRIPT, Collections.emptyList(), voucherId.toString(), userId.toString(), String.valueOf(orderId) ); int r = result.intValue(); // 2.判断结果是否为0 if (r != 0) { // 2.1.不为0 ,代表没有购买资格 return Result.fail(r == 1 ? "库存不足" : "不能重复下单"); } // 3.返回订单id return Result.ok(orderId); }
// 线程池 private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor(); /** * 在类初始化完成后执行 */ @PostConstruct private void init() { SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler()); } // 阻塞队列 private BlockingQueueorderTasks = new ArrayBlockingQueue(1024 * 1024); private class OrderHandler implements Runnable{ @Override public void run() { while (true){ try { doSomething(); } catch (Exception e) { log.error("处理订单异常", e); } } } }
基于Redis实现共享session登录
public class RefreshTokenInterceptor implements HandlerInterceptor { private StringRedisTemplate stringRedisTemplate; public RefreshTokenInterceptor(StringRedisTemplate stringRedisTemplate) { this.stringRedisTemplate = stringRedisTemplate; } @Override public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception { // 1、获取请求头中的token String token = request.getHeader("authorization"); if (StrUtil.isBlank(token)) { return true; } // 2、基于TOKEN获取redis中的用户 String key = LOGIN_USER_KEY + token; Map
到此这篇关于Redis分布式缓存与秒杀的文章就介绍到这了,更多相关Redis分布式缓存秒杀内容请搜索24分享网以前的文章或继续浏览下面的相关文章希望大家以后多多支持24分享网!
终于介绍完啦!小伙伴们,这篇关于《Redis分布式缓存与秒杀》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~the24.cn也会发布数据库相关知识,快来关注吧!
◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。