◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。
请我喝杯咖啡☕
*我的帖子解释了 emnist。
emnist()可以使用emnist数据集,如下所示:
*备忘录:
from torchvision.datasets import emnist train_data = emnist( root="data", split="byclass" ) train_data = emnist( root="data", split="byclass", train=true, transform=none, target_transform=none, download=false ) test_data = emnist( root="data", split="byclass", train=false ) len(train_data), len(test_data) # 697932 116323 train_data # dataset emnist # number of datapoints: 697932 # root location: data # split: train train_data.root # 'data' train_data.split # 'byclass' train_data.train # true print(train_data.transform) # none print(train_data.target_transform) # none train_data.download # <bound method emnist.download of dataset emnist # number of datapoints: 697932 # root location: data # split: train> train_data[0] # (<pil.image.image image mode=l size=28x28>, 35) train_data[1] # (<pil.image.image image mode=l size=28x28>, 36) train_data[2] # (<pil.image.image image mode=l size=28x28>, 6) train_data[3] # (<pil.image.image image mode=l size=28x28>, 3) train_data[4] # (<pil.image.image image mode=l size=28x28>, 22) train_data.classes # ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', # 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', # 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', # 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', # 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
from torchvision.datasets import emnist train_data = emnist( root="data", split="byclass", train=true ) test_data = emnist( root="data", split="byclass", train=false ) import matplotlib.pyplot as plt def show_images(data): plt.figure(figsize=(12, 2)) col = 5 for i, (image, label) in enumerate(data, 1): plt.subplot(1, col, i) plt.title(label) plt.imshow(image) if i == col: break plt.show() show_images(data=train_data) show_images(data=test_data)
from torchvision.datasets import EMNIST from torchvision.transforms import v2 train_data = EMNIST( root="data", split="byclass", train=True, transform=v2.Compose([ v2.RandomHorizontalFlip(p=1.0), v2.RandomRotation(degrees=(90, 90)) ]) ) test_data = EMNIST( root="data", split="byclass", train=False, transform=v2.Compose([ v2.RandomHorizontalFlip(p=1.0), v2.RandomRotation(degrees=(90, 90)) ]) ) import matplotlib.pyplot as plt def show_images(data): plt.figure(figsize=(12, 2)) col = 5 for i, (image, label) in enumerate(data, 1): plt.subplot(1, col, i) plt.title(label) plt.imshow(image) if i == col: break plt.show() show_images(data=train_data) show_images(data=test_data)
◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。