◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。
此脚本将从 boardgamegeek api 获取项目数据并将数据存储在 csv 文件中。
我更新了之前的脚本。由于 api 响应采用 xml 格式,并且没有端点可以一次获取所有项目,因此前面的脚本将循环遍历提供的 id 范围,对每个项目进行逐一调用。这不是最优的,对于较大范围的 id 来说需要很长时间(目前 bgg 上可用的项目 (id) 的最高数量高达 400k+),并且结果可能不可靠。因此,通过对此脚本的一些修改,更多的项目id将作为参数值添加到单个请求url中,这样,单个响应将返回多个项目(〜800是单个响应返回的最高数量。bgg稍后可能会更改它;您可以轻松调整batch_size以便根据需要进行调整)。
此外,此脚本将获取所有项目,而不仅仅是与棋盘游戏相关的数据。
为每个棋盘游戏获取和存储的信息如下:
立即学习“Python免费学习笔记(深入)”;
名称、游戏 id、类型、评级、权重、发布年份、最小玩家数、最大玩家数、最短游戏时间、最大支付时间、最小年龄、所属者、类别、机制、设计师、艺术家和发行商。
该脚本的更新如下;我们首先导入此脚本所需的库:
# import libraries from bs4 import beautifulsoup from csv import dictwriter import pandas as pd import requests import time
以下是脚本完成时根据 id 范围调用的函数。此外,如果发出请求时出现错误,将调用此函数以存储截至异常发生时附加到游戏列表的所有数据。
# csv file saving function def save_to_csv(games): csv_header = [ 'name', 'game_id', 'type', 'rating', 'weight', 'year_published', 'min_players', 'max_players', 'min_play_time', 'max_play_time', 'min_age', 'owned_by', 'categories', 'mechanics', 'designers', 'artists', 'publishers' ] with open('bgg.csv', 'a', encoding='utf8') as f: dictwriter_object = dictwriter(f, fieldnames=csv_header) if f.tell() == 0: dictwriter_object.writeheader() dictwriter_object.writerows(games)
我们需要定义请求的标头。请求之间的暂停可以通过 sleep_between_requests 设置(我看到一些信息说速率限制是每秒 2 个请求,但它可能是过时的信息,因为我将暂停设置为 0 没有遇到问题)。另外,这里设置起始点id(start_id_range)、最大范围(max_id_range)和batch_size的值,batch_size是响应应该返回的游戏数量。基本 url 在本节中定义,但 id 在脚本的下一部分中添加。
# define request url headers headers = { "user-agent": "mozilla/5.0 (macintosh; intel mac os x 10.16; rv:85.0) gecko/20100101 firefox/85.0", "accept-language": "en-gb, en-us, q=0.9, en" } # define sleep timer value between requests sleep_between_request = 0 # define max id range start_id_range = 0 max_id_range = 403000 batch_size = 800 base_url = "https://boardgamegeek.com/xmlapi2/thing?id="
下面是这个脚本的主要逻辑。首先,根据批量大小,它会生成一个在定义的 id 范围内的 id 字符串,但 id 的数量不得超过 batch_size 中定义的数量,并将其附加到 url 的 id 参数中。这样,每个响应将返回与批量大小相同的项目数量的数据。之后,它将处理数据并将其附加到每个响应的游戏列表中,最后附加到 csv 文件中。
# main loop that will iterate between the starting and maximum range in intervals of the batch size for batch_start in range(start_id_range, max_id_range, batch_size): # make sure that the batch size will not exceed the maximum ids range batch_end = min(batch_start + batch_size - 1, max_id_range) # join and append to the url the ids within batch size ids = ",".join(map(str, range(batch_start, batch_end + 1))) url = f"{base_url}?id={ids}&stats=1" # if by any chance there is an error, this will throw the exception and continue on the next batch try: response = requests.get(url, headers=headers) except exception as err: print(err) continue if response.status_code == 200: soup = beautifulsoup(response.text, features="html.parser") items = soup.find_all("item") games = [] for item in items: if item: try: # find values in the xml name = item.find("name")['value'] if item.find("name") is not none else 0 year_published = item.find("yearpublished")['value'] if item.find("yearpublished") is not none else 0 min_players = item.find("minplayers")['value'] if item.find("minplayers") is not none else 0 max_players = item.find("maxplayers")['value'] if item.find("maxplayers") is not none else 0 min_play_time = item.find("minplaytime")['value'] if item.find("minplaytime") is not none else 0 max_play_time = item.find("maxplaytime")['value'] if item.find("maxplaytime") is not none else 0 min_age = item.find("minage")['value'] if item.find("minage") is not none else 0 rating = item.find("average")['value'] if item.find("average") is not none else 0 weight = item.find("averageweight")['value'] if item.find("averageweight") is not none else 0 owned = item.find("owned")['value'] if item.find("owned") is not none else 0 link_type = {'categories': [], 'mechanics': [], 'designers': [], 'artists': [], 'publishers': []} links = item.find_all("link") # append value(s) for each link type for link in links: if link['type'] == "boardgamecategory": link_type['categories'].append(link['value']) if link['type'] == "boardgamemechanic": link_type['mechanics'].append(link['value']) if link['type'] == "boardgamedesigner": link_type['designers'].append(link['value']) if link['type'] == "boardgameartist": link_type['artists'].append(link['value']) if link['type'] == "boardgamepublisher": link_type['publishers'].append(link['value']) # append 0 if there is no value for any link type for key, ltype in link_type.items(): if not ltype: ltype.append("0") game = { "name": name, "game_id": item['id'], "type": item['type'], "rating": rating, "weight": weight, "year_published": year_published, "min_players": min_players, "max_players": max_players, "min_play_time": min_play_time, "max_play_time": max_play_time, "min_age": min_age, "owned_by": owned, "categories": ', '.join(link_type['categories']), "mechanics": ', '.join(link_type['mechanics']), "designers": ', '.join(link_type['designers']), "artists": ', '.join(link_type['artists']), "publishers": ', '.join(link_type['publishers']), } # append current item to games list games.append(game) except typeerror: print(">>> nonetype error. continued on the next item.") continue save_to_csv(games) print(f">>> request successful for batch {batch_start}-{batch_end}") else: print(f">>> failed batch {batch_start}-{batch_end}") # pause between requests time.sleep(sleep_between_request)
下面您可以以 pandas dataframe 的形式预览 csv 文件中的前几行记录。
# Preview the CSV as pandas DataFrame df = pd.read_csv('./bgg.csv') print(df.head(5))
◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。